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a b s t r a c t 

The data imbalance problem is a frequent bottleneck in the classification performance of neural networks. 

In this paper, we propose a novel supervised discriminative feature generation (DFG) method for a mi- 

nority class dataset. DFG is based on the modified structure of a generative adversarial network consist- 

ing of four independent networks: generator, discriminator, feature extractor, and classifier. To augment 

the selected discriminative features of the minority class data by adopting an attention mechanism, the 

generator for the class-imbalanced target task is trained, and the feature extractor and classifier are reg- 

ularized using the pre-trained features from a large source data. The experimental results show that the 

DFG generator enhances the augmentation of the label-preserved and diverse features, and the classifi- 

cation results are significantly improved on the target task. The feature generation model can contribute 

greatly to the development of data augmentation methods through discriminative feature generation and 

supervised attention methods. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Deep learning has achieved significant improvements in various 

asks in computer vision applications, such as multimodal learning 

1] , image retrieval [2] and pose estimation [3] , using open image 

atasets containing a large amount of data. However, the acqui- 

ition of large datasets is a challenge in real-world applications, 

specially if they pertain to new areas in deep learning. For train- 

ng deep neural networks, the quantity of data is as important as 

he quality because training with only a small dataset often results 

n degradation of the neural network performance or introduces 

n over-fitting problem. Attempts have been made to establish a 

arge training dataset in various fields; however, the annotation of 

 dataset still remains expensive, laborious, and time-consuming. 

urthermore, the distribution of classes in the dataset is often im- 

alanced. Training a network under class-imbalanced conditions 

an produce a detrimental effect on neural network performance 

nd a biased classification result [4–6] . 

Data augmentation enhances the size and quality of the training 

ataset. The methods of data augmentation at the input data level 

ange from simple data augmentation, such as flip, shift, and ro- 
∗ Corresponding author. 

E-mail address: yongoh.lee@kist-europe.de (Y.O. Lee). 
1 https://github.com/opensuh/DFG/ 
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ation, to generative models: the statistical generative models such 

s the synthetic minority oversampling technique (SMOTE) [7] and 

ts variants [8–10] , and the deep learning generative models based 

n generative adversarial networks (GAN) [11] . GANs, approximat- 

ng the distribution of the real input data and generate realistic 

amples from a generative model has the powerful capacity to gen- 

rate synthetic data so that many recent studies have shown that 

ugmenting a small training dataset using a GAN can further im- 

rove the classification performance compared to statistical gener- 

tive models in real class-imbalanced applications [12–17] . How- 

ver, such data augmentation at input level using GAN showed the 

imited improvement in the performance, because balancing the 

ata distribution have week relation to the enhancement of fea- 

ure extraction in the minority dataset. Also, the state-of-art GAN 

as the limited generating capability on large-scale images [18,19] . 

hen the size of input image is large, these augmentation method 

s not applicable. 

In the data augmentation using GAN, the adversarial feature 

ugmentation is considered. Unlike data augmentation at the in- 

ut data level, adversarial feature augmentation generates domain- 

nvariant features, increasing the size of the minority classes in 

he feature space without considering the modality of the input 

ata [20] . This augmentation was adopted in supervised learn- 

ng, especially for the class imbalance problem [21] . Although the 

eature augmentation method performs better than the unsuper- 

https://doi.org/10.1016/j.patcog.2021.108302
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108302&domain=pdf
mailto:yongoh.lee@kist-europe.de
https://github.com/opensuh/DFG/
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ised domain adaptation method by generating domain-invariant 

nd modality-free features, the generated feature maps from the 

uter fully connected layer do not have sufficient feature dimen- 

ions to represent the data distribution with a small amount of 

inority class data. In other words, generating features in convo- 

utional layers has a greater capacity to improve classification per- 

ormance in the case of the class-imbalanced conditions. 

Taking these problems into consideration, we propose a novel 

iscriminative feature generation (DFG) method using attention 

aps in the feature space. The proposed method is a combina- 

ion of transfer learning and adversarial feature augmentation to 

omplement their drawbacks. The baseline is transfer learning with 

egularizations, and the features are augmented using a GAN with 

he weight of the activation level of the feature maps in each class. 

The framework is based on a modified GAN structure contain- 

ng an independent classifier to improve the neural network per- 

ormance. We extend the adversarial feature augmentation [22] in 

he following three manners: (1) Our GAN structure is composed 

f four independent networks: a feature generator, feature dis- 

riminator, feature extractor, and feature classifier. The more con- 

tituent networks enable the network to be trained for generat- 

ng more effective features, especially for small sample data, in 

he feature space. (2) Similar to DELTA [20] , we deploy regulariza- 

ions to the feature extractor and the feature classifier for trans- 

er learning to select the discriminative features from the outer 

ayer outputs and transfer pre-trained knowledge from the large- 

cale source dataset. (3) In the training phase, we employ a fea- 

ure generation method in a small-sized target dataset, which aug- 

ents the selected discriminative features by adopting the atten- 

ion mechanisms for each class label through supervised learning. 

Our main contribution is a novel feature generation and aug- 

entation using the proposed GAN structure to unravel the data 

mbalanced problem and improve neural network performance. In 

he proposed GAN structure, a feature extractor and a feature clas- 

ifier are included to train together with a feature generator and 

 feature discriminator. For the generation of meaningful features 

or classification of small-sized target data, transfer learning with 

egularization and class-wise attention is adopted. We evaluate the 

roposed method with various pairs of source and target dataset to 

how general applicability to classification in the class-imbalanced 

onditions. 

The remainder of this paper is organized as follows. In 

ection 2 , related works are summarized. The framework and 

raining procedure are presented in Section 3 . In Section 4 , the 

enchmark datasets for verification and the experimental results 

re detailed. Section 5 concludes the paper and provides scope for 

uture research. 

. Related work 

GAN [11] is a generative model based on a min-max game the- 

ry scenario that pits two networks against one another. A gen- 

rator network, G , competes against a discriminator network, D , 

hat distinguishes between samples generated from G and samples 

rom the training data. GAN can generate synthetic data close to 

he original; however, the training process of GAN has the insta- 

ility of loss function convergence and the problem of mode col- 

apse [23] . To avoid such problems, the Wasserstein GAN (WGAN) 

24] and the WGAN with a gradient penalty (WGAN-GP) [25] us- 

ng the Wasserstein-K distance as the loss function were proposed. 

ecently, GAN has been extended in several ways to control the 

enerated properties [26–28] and its utilization, such as data aug- 

entation [13,14,29] . 

Recently, GAN-based data augmentation methods were pro- 

osed to further improve the creation of augmented synthetic 

raining data. Huang et al. [15] proposed stacked GAN (SGAN), 
2 
hich is trained to invert the hierarchical representations of a 

ottom-up discriminative network. Guo et al. [16] proposed a dis- 

riminative variational autoencoding adversarial network, which 

earns a latent two-component mixture distributor and allevi- 

tes the class imbalance for deep imbalanced learning. Cui et al. 

30] proposed a class-balanced loss for long-tailed distributions. 

he class-balanced loss re-weights losses inversely with the effec- 

ive number of samples per class. Although the generated synthetic 

ata can balance the distribution between the classes, the classifi- 

ation performance is limited due to no guarantee enhancing the 

eature extraction ability of the classifier, when it is an indepen- 

ent network of the GAN. Even if GAN is trained with the classifier 

ogether like [31] , GAN has the limitation to generate real-looking 

ynthetic data on large-scale images. Not-qualified synthetic data 

s not able to improve the performance of the classification signif- 

cantly. 

Unlike GAN-based data augmentation at the input data level, 

olpi et al. [22] proposed augmentation in the feature space. A 

eature extractor is trained with the source dataset under super- 

ised learning, and then a feature generator for the unlabeled tar- 

et dataset is trained in the convolutional GAN (CGAN) framework 

26] against the feature extractor. Zhang et al. [21] developed a 

ore general feature generation framework for imbalanced classifi- 

ation, inspired by the adversarial feature augmentation approach. 

hese methods can generate domain-invariant features without 

onsidering the modality of the data. Consequently, they achieved 

etter performance than unsupervised domain adaptation meth- 

ds. However, the improvement of the classification under the 

lass-imbalanced condition is still not significant. The dimension of 

he features in the feature extractor is considerably lower than the 

nput data. Such a low dimension may not be sufficient to present 

he data distribution of a small amount of minority class data. The 

enerated features should be domain-invariant and modality-free. 

To generate key features from small or minority class data, 

ransfer learning is able to be applied. Transfer learning is a 

achine learning method that transfers knowledge learned in a 

ource task to a target task [32–34] . The weights of deep neural 

etworks are first pre-trained on a large-scale dataset, which is 

alled the source task, and then fine-tuned using the data from the 

arget task with a small amount of data [33] . In the case of fine-

uning in convolutional neural networks, the weights in the first 

ew convolution layers are fixed by pre-training. The last convo- 

ution layers are fine-tuned by the target task. During fine-tuning, 

he parameters of the target model can be driven far away from 

he pre-trained parameter values, leading to the incorporation of 

nformation relevant to the targeted problem and overfitting to 

he target task, so-called catastrophic forgetting [35] . This sim- 

le method cannot guarantee good performance because it may 

n many cases burden the network of the target task with irrele- 

ant information. Yosinki et al. [36] quantified the transferability of 

eatures from each layer to learn transferable representations. For 

onstraining catastrophic forgetting in inductive transfer learning, 

 

2 -norm regularization was proposed in [37] . The key concept of 

 

2 -SP is “starting point as reference” optimization, which tries to 

rive weight parameters to pre-trained values by regularizing the 

istance between the parameters of source and target tasks. 

Instead of regularizing the weight parameters, deep learning 

ransfer using a feature map with attention (DELTA), which is a 

egularized transfer learning framework, was proposed by Li et al. 

20] . Inspired by knowledge distillation for model compression 

38–40] , DELTA employs the ideas of “inactivated channel re-usage”

nd feature map regularization with attention. These regulariza- 

ion approaches achieved significant improvement and alleviated 

he catastrophic forgetting problem by drawing weight parame- 

ers close to pre-trained values or aligning transferable channels 

n feature maps. It constrains the difference between the feature 
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aps generated by the convolution layers of the source and target 

etworks with attention. DELTA selects the discriminative features 

rom the outer layer outputs using a supervised attention mecha- 

ism. To further improve the performance of the classification with 

 small training dataset or class-imbalanced dataset, a DFG method 

sing attention maps in the feature space is proposed in this paper. 

. Discriminative feature generation 

Our goal is to generate discriminative features to improve the 

erformance of the neural network on a small number of training 

ata and the class-imbalanced dataset. 

Unlike CGAN and ACGAN [26,27] , the structure of the feature 

lassifier to the independent network is employed in the proposed 

AN structure. The proposed GAN structure is composed of four 

ndependent networks: a feature generator, feature discriminator, 

eature extractor, and feature classifier. The structure of the pro- 

osed GAN model is shown in Fig. 1 . The feature extractor repre- 

ents a first convolution layer or block in a neural network classi- 

er, and the feature classifier represents the rest of the convolution 

ayers and fully connected layers after the feature extractor in the 

eural network classifier. The feature extractor and classifier are 

egularized with transferred weights from the source model, sim- 

lar to [20] for better feature extraction of small sampled classes 

n the target domain. First, we deploy the feature map regulariza- 

ion following the conceptual ideas of the knowledge distillation 

echnique in the training procedure of GAN. Through this regular- 

zation, the feature extraction in the target domain is enhanced. 

oreover, we train the feature generator with supervised atten- 

ion models to generate discriminative features. Applying the su- 

ervised attention models increase the selectivity of key features 

or classification. The feature discriminator is trained to distin- 

uish the real features from the feature extractor and the gener- 

ted features from the feature generator, and the feature classifier 

s trained with the real features and the generated features. More 

etailed explanations about the proposed method are followed. 
Fig. 1. Structure of the 

3 
.1. Training GAN model with four independent networks 

For the stability of the training procedure and the quality of 

he generated data, we deploy the objective formulation of WGAN- 

P for the feature discriminator and the feature generator. The loss 

unctions of the feature discriminator and the feature generator are 

enoted by L D and L G , respectively. 

 D (x, z, ̂  y ; θD ) = − E 

(z, ̂ y ) ∼(P z , ̂ Y ) 

[ D (G (z, ̂  y ))] + E 

x ∼X 
[ D (E(x ))] 

+ λ E 

ˆ x ∼P ˆ x 

[(‖∇ ˆ x D ( ̂  x ) ‖ 2 − 1) 2 ] , (1) 

 G (z, ̂  y ; θG ) = − E 

(z, ̂ y ) ∼(P z , ̂ Y ) 

[ D (G (z, ̂  y ))] , (2) 

here z is the noise vector sampled from uniform distribution P z , 

nd feature generator G generates synthetic feature G (z) . λ is the 

enalty coefficient, and P ˆ x is the uniform sampling along straight 

ines between pairs of points from the real data distribution, P r , 

nd the generated data distribution. θD and θG are the parame- 

ers of the feature discriminator and the feature generator, respec- 

ively. Feature discriminator D is trained to minimize L D to distin- 

uish between real and generated features. Generator G is trained 

o minimize L G . 

To generate the distribution of features similar to the real fea- 

ures from the feature extractor, a total loss function of the feature 

lassifier contains a loss function of the feature classifier on the 

eatures concatenating the real and generated features as well. The 

bjective functions of the feature extractor and classifier are repre- 

ented as follows: 

 E (x, y ; θE ) = E 

(x,y ) ∼(X,Y ) 
[ −y log C(E(x ))] , (3) 

 C (x, y, z, ̂  y ; θC ) = α L 

r 
C (x, y ; θC ) + β L 

r 
C (x, y ; θC ) 

+ γ L c C (α + β + γ = 1) . (4) 

n (4) , the loss functions of L r C , L 
g 
C 

, and L c 
C 

are defined as 

 

r 
C (x, y ; θC ) = E (x,y ) ∼(X,Y ) [ −y log C(E(x ))] , (4a) 
proposed model. 
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Algorithm 1 Training procedure of the proposed DFG method. We use the default values of λ = 10 , n D = 5 , n C1 = 2 , n C2 = 10 , and n W 

= 

20 0 0 . 

Require: Batch size m , learning rate η, hyperparameter for weight sum ρ , hyperparameters α, β , and γ , and a threshold value for filter 

weight δ. 

1: Initialize: θE , θC from pre-trained source networks θE S 
, θC S 

. 

2: W j (E S ; θE S 
) ← softmax( −y log C S (E 

θ
\ j 
E S 

(x )) + y log C S (E θE S 
(x )) ) 

3: for k = 1 ,…, n l number of class labels do 

4: W 

∗
j 
(E S , y = k ; θE S 

) ← W j (if W j > δ/n l ), W 

∗
j 
(E S , y = k ; θE S 

) ← 0 (else) 

5: for step = 1 , . . . , number of training iteration do 

6: for t = 1 , . . . , n D do 

7: Sample { x (i ) } m 

i =1 
∼ P r a batch from the real data. 

8: Sample { z (i ) } m 

i =1 
∼ P z a generated batch and labels { ̂  y (i ) } m 

i =1 
. 

9: Update feature discriminator D using Eq.(1): θD ← θD − ηD ∇ θD 
L D (x, z, ̂  y ; θD ) , 

10: Sample { z (i ) } m 

i =1 
∼ P z a generated batch and labels { ̂  y (i ) } m 

i =1 
. 

11: Sample { x (i ) } m 

i =1 
∼ P r a batch from the real data and labels { y (i ) } m 

i =1 
. 

12: Update feature generator G using Eq. (2): θG ← θG − ηG ∇ θG 
L G (z, ̂  y , W 

∗
j 
; θG ) , 

13: if step ≡ 0( mod n C1 ) then 

14: Concatenate real and generated features following Eq. (4c): ˜ x , ˜ y , 

15: Update G using Eq. (4c): θG ← θG − ηG ∇ θG 
L 

c 
C 
(x, y, z, ̂  y , W 

∗
j 
; θG ) , 

16: Update feature extractor E using Eq. (3): θE ← θE − ηE ∇ θE 
L E (x, y ; θE ) , 

17: Update feature classifier C using Eq. (4a): θC ← θC − ηC ∇ θC 
L 

r 
C (x, y ; θC ) , 

18: if step ≡ 0( mod n C2 ) then 

19: Concatenate real and generated features following Eq. (4c): ˜ x , ˜ y , 

20: Update C using Eq. (4): θC ← θC − ηC ∇ θC 
L C (x, y, z, ̂  y , W 

∗
j 
; θC ) , 

21: if iter ≡ 0( mod n W 

) then 

22: Update filter weight using Eq.(5): W j (E; θE ) ← softmax( −y log C(E 
θ
\ j 
E 

(x )) + y log C(E θE 
(x )) ). 

23: for k = 1 ,…, n l number of class labels do 

24: W 

∗
j 
(E, y = k ; θE ) ← ρW j (E S , y = k ; θE S 

) + (1 − ρ) W j (E, y = k ; θE ) Eq.(7) (if W j (E; θE ) > δ/n l ), 

25: W 

∗
j 
(E, y = k ; θE ) ← 0 (else) 

L
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g 
C 
(z, ̂  y ; θC ) = E (z, ̂ y ) ∼(p z (z) , ̂ Y ) [ − ˆ y log C(G (z, ̂  y ))] , (4b) 

 

c 
C (x, y, z, ̂  y ; θC , θG ) = E 

( ̃ x , ̃ y ) ∼( ̃ X , ̃ Y ) 

[ − ˜ y log C( ̃  x )] , 

where ˜ x = E(x ) � G (z, ̂  y ) , ˜ y = y � ˆ y (4c) 

here L E and L C are the loss functions of the feature extractor and 

eature classifier, respectively. θE and θC are the parameters E and 

, respectively. � denotes a concatenation operation. L 

c 
C 

is the loss 

unction of the feature classifier on the feature maps concatenated 

ith the real and generated features. α, β , and γ are hyperparam- 

ters that control the importance of the classification for the real 

nd generated data. In L E and L 

r 
C , the regularization term, which 

haracterizes the differences between the source and target net- 

ork for transfer learning, can be added. 

Feature generator G (to minimize (2) and (4c) ) and feature 

lassifier C (to minimize (4) and (4a) ) are trained simultaneously, 

hereas feature discriminator D and feature extractor E are trained 

o minimize (1) and (3) , respectively. The reason why feature clas- 

ifier C is optimized not only with the real data is to prevent the 

lassifier from overfitting to the real data because the performance 

f the classifier with the real data is not sufficient to improve the 

erformance of the classification under the class-imbalanced con- 

ition. 

In the training procedure, we define two training parameters. 

he generator learning parameter controls the ratio between L G 

nd L 

g 
C 

while optimizing the generator parameter, θG . The classifier 

earning parameter is used to control the balance of how much the 

lassifier is trained from the feature extracted from the real data 

 

r or from the real features combined with the generated features, 

C 

4 
 C . The training details of the proposed method using (1), (2), (3) , 

nd (4) with these parameters are summarized in Algorithm 1 . 

.2. Discriminative feature generation by using the supervised 

ttention model 

To generate discriminative features, we adopt supervised atten- 

ion mechanisms for each class label. To obtain the weights for 

eature maps, we propose a supervised attention method adopted 

rom [20] for the generator network. Whereas the supervised at- 

ention method in [20] is calculated by averaging the filter weight 

or each filter, we utilize the fact that the importance of each fil- 

er varies from class to class. We transform the filter weights for 

 single data into class-wise filter weights and deactivate channels 

ith low filter weights. 

In the supervised attention method from [20] , the weights of 

he features are characterized by the performance loss when re- 

oving the convolutional filter for each feature from the feature 

xtractor network. For a conv2d layer in the feature extractor and 

enerator, the parameter form is a four-dimensional tensor with 

he shape of (c i +1 , c i , k h , k w 

) , where c i denotes the number of

hannels of the i -th layer and (k h , k w 

) represents the size of the

ernel. At the last convolution layer of the feature extractor, the 

imension of the output feature maps is (c i +1 , h i +1 , w i +1 ) , which is

atched with the dimension of the output of the feature genera- 

or. We can measure significance through the performance reduc- 

ion of the feature extractor and classifier when the filter in the 

ast convolution layer is disabled in the feature extractor network. 

n other words, because it usually causes higher performance loss 

o remove a filter with a greater capacity for discrimination, we 

an improve the performance of the classification by generating 

eature maps focusing on channels with high filter weights. The fil- 
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Table 1 

Summary of the benchmark datasets. 

Dataset Classifier # of training dataset 

SVHN LeNet5 73,237 

F-MNIST LeNet5 60,000 

STL-10 VGGNet-16 5,000 

CINIC-10 VGGNet-16 18,000 

Caltech-256 ImageNet 30,607 

Food-101 ImageNet 75,750 
er weight is calculated through the feature extractor and classifier 

nd is input into the feature generator. The feature generator gen- 

rates weighted feature maps with deactivated feature maps us- 

ng the filter weight. The deactivated feature maps are denoted in 

lack in Fig. 1 . 

The filter weight is expressed in (5) , which is used to calculate 

he gap between the classification losses of the feature extractor 

nd classifier on data (x, y ) with and without the j-th filter in the

ast convolution layer of the feature extraction network. 

 j (E, x, y ; θE ) = softmax [ −y log C(E 
θ\ j 

E 

(x )) + y log C(E θE 
(x ))] , 

(5) 

here θ\ j 
E 

denotes the modified parameter from θE with all ele- 

ents of the j-th filter set to zero. 

Because each class usually has different importance of the filter 

hannel, the calculated filter weights for a single data point can be 

ransformed into class-wise filter weights. 

 j (E, c; θE ) = n f × W j (E,x i ,y i | y i = c;θE ) 

n c 
(6) 

here W j (E, c; θE ) ( W ∈ R 

n c ×n f ) is a class-wise filter weight, c is a

lass label, n c is the number of images in the class, and n f is the

umber of filters. By multiplying the number of filters n f , we set 

he average value of the weights to 1. When transfer learning is 

sed for the small training dataset and class imbalance problem, 

 filter weight on the source model can be obtained through fea- 

ure extractor E S with parameter θE S 
and classifier C S with param- 

ter θC S 
trained on the source dataset. Whereas the filter weight 

n [20] was calculated on the source model only, the proposed 

ethod updates the filter weight on the target model. In this case, 

he filter weight can be expressed in the form of a weighted sum 

etween the filter weight on the source dataset and the target 

ataset. 

 j (E, c; θE ) = ρW j (E S , c; θE S ) + (1 − ρ) W j (E, c; θE ) , (7) 

By applying the weight to the filters of the last layer in the fea-

ure generator, the feature generator can generate discriminative 

eatures by following the supervised attention models. The opera- 

ion of the last layer in the original feature generator is expressed 

s follows. 

f l (z, ̂  y ) = norm [ tanh ( TransConv ( f l−1 (z, ̂  y ) , θ l 
G ) + b l )] (8) 

ote that f l denotes the features of the l-th layer in the feature 

enerator, norm () performs batch normalization, TransConv ( f, θ ) 

s a transpose convolution that takes f as the input with θ as a 

eight, and b l is a bias vector of the l-th layer. To generate dis-

riminative features by using the class-wise weights of a filter, the 

peration can be rewritten as follows. 

ˆ f l j (z, ̂  y ) = norm [ W 

∗
j (E, c = 

ˆ y ; θE ) 

· tanh ( TransConv j ( f l−1 (z, ̂  y ) , θ l 
G ) + b l j )] (9) 

ˆ f l (z, ̂  y ) is a discriminative feature generated by the supervised 

ttention model. To maximize the difference in the weights and in- 

ctivate unimportant filter channels, we set the weight values that 

re smaller than a threshold, δ, to zero and represent as W 

∗
j 

. δ is

et to 0.95 of the average value of all filters for each class. 

. Experimental results 

.1. Datasets and architectures 

To evaluate the proposed method, we used the following six 

enchmark datasets: Street View House Numbers (SVHN) [41] , 

ashion-MNIST (F-MNIST) [42] , STL-10 [43] , CINIC-10 [44] , Caltech- 

56 [45] , and Food-101 [46] . As a classifier model, LeNet5 [47] for
5 
VHN and F-MNIST, VGGNet-16 [48] for STL-10 and CINIC-10, and 

esNet-50 [49] for Caltech-256 and Food-101 were employed. We 

sed extended MNIST digits (EMNIST) [50] , CIFAR-10 [51] , and Ima- 

eNet [52] as the source domain for LeNet-5, VGG-16, and ResNet- 

0, respectively. The architecture of our feature discriminator and 

eature generator closely follow the deep convolutional GAN (DC- 

AN) architecture model [53] , which is an extended model of the 

AN that uses three transpose convolution layers in the genera- 

or and three convolution layers in the feature discriminator. A 

ummary of the benchmarked dataset is presented in Table 1 . 

ppendix A contains additional information on benchmarks and 

yperparameters. The source code to reproduce our experiments 

s available at https://github.com/opensuh/DFG . 

To evaluate the proposed method under the class-imbalanced 

ondition, we adopt the step imbalance type described in [6] . The 

tep imbalance assumes that the classes are divided into minor- 

ty and majority groups. Then, classes in the same group have the 

ame number of data points, making a step in the data distribution 

lot. In this evaluation, we set the number of majority classes as 

wo and eight to evaluate under imbalanced conditions. All com- 

inations of class imbalance cases were tested in the evaluation. 

or small training datasets such as STL-10 and Caltech-256, we did 

ot create an imbalanced condition. Under the class balanced con- 

ition, each experiment was repeated 10 times. 

SVHN: To test the transferability in the same domain, we set 

MNIST as the source task and SVHN as the target task, where 

oth are single-digit images. To reduce the image dimension gap, 

he SVHN images are converted to grayscale. For the imbalance 

0:1 ratio set-up in training, the number of majority class images 

s 50 0 0, and one of the minority class images is 50 0 in SVHN. 

F-MNIST: To test the transferability in the different domains, 

e set EMNIST as the source task and F-MNIST as the target task 

hich has images of fashion and clothing items. For imbalanced 

0:1 ratio set-up in training, the number of majority class images 

s 60 0 0 and that of minority class images is 150 in F-MNIST. 

STL-10: STL-10 images are resized to 32 × 32 to match the im- 

ge dimension of CIFAR-10. In this case, class imbalance is not ap- 

lied, but a small training dataset where 500 images per class are 

sed in STL-10. 

CINIC-10: CINIC-10 dataset contains 90 0 0 training images in 

ach class and we sampled 900 images from each minor class for 

mbalance 10:1 ratio. 

Caltech-256: Caltech 256 contains 257 object categories and 

0,607 images. In this study, we sampled 60 training samples for 

ach category, referring to [20,37] . We resized the input images to 

56 × 256, followed by data augmentation operations of random 

irror and random crop to 224 × 224. 

Food-101: Food-101 contains 101 food categories with 101,0 0 0 

mages. A total of 750 training images and 250 test images were 

rovided for each class. We sampled 250 training samples from 

inority classes for an imbalance of 5:1 ratio set-up during train- 

ng. 

All the experiments were implemented using Python scripts in 

he PyTorch framework and tested on a Linux system. Training pro- 

https://github.com/opensuh/DFG
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Table 2 

Comparison results (in %) of our method with competing algorithms. The numbers are represented as mean ±std . Four datasets 

are under the data-imbalanced condition, and two datasets are under the data-balanced conditions. The number of the training 

datasets is small. 

Dataset 

(IR) 

Original Fine-tuning DELTA DIFA + 

cMWGAN 

Ours(DFG) 

SVHN 

(10:1) 

76.57 ± 1.65 76.66 ± 0.65 78.47 ± 0.57 76.64 ± 1.32 80.81 ± 0.25 

F-MNIST 

(40:1) 

77.13 ± 3.24 75.39 ± 3.54 78.91 ± 2.27 78.27 ± 2.32 82.65 ± 0.28 

STL-10 

(1:1) 

66.73 ± 0.67 72.89 ± 0.38 79.41 ± 0.27 80.08 ± 0.19 81.09 ± 0.17 

CINIC-10 

(10:1) 

58.14 ± 3.42 64.42 ± 0.81 68.89 ± 0.18 71.82 ± 0.35 72.09 ± 0.20 

Caltech-256 

(1:1) 

43.30 ± 0.34 81.99 ± 0.12 85.33 ± 0.15 82.23 ± 0.32 87.09 ± 0.20 

Food-101 

(5:1) 

30.17 ± 1.72 68.99 ± 0.42 72.03 ± 0.35 71.71 ± 0.08 76.00 ± 0.36 
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Table 3 

Accuracy comparisons on Caltech-256 dataset with different 

network structures. 

Feature Extractor Output Dimension Accuracy (%) 

1st block 56 × 56 × 256 87.09 ± 0.20 

2nd block 28 × 28 × 512 86.39 ± 0.16 

3rd block 14 × 14 × 1024 86.67 ± 0.18 

4rd block 7 × 7 × 2048 84.48 ± 0.37 
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edures were performed on NVIDIA Tesla V100 GPUs. The training 

etails can be found in Appendix A . 

.2. Results and comparisons 

To establish a baseline for comparison, we denote “Original”

s the performance of a classification model trained on the target 

ataset. “Original” is trained under the class-imbalanced condition 

n the case of SVHN, F-MNIST, CINIC-10, and Food-101. In the case 

f STL-10 and Caltech-256, “Original” is trained under the class- 

alanced condition that contains a small number of train data. 

As mentioned, “Original” in Table 2 is trained without trans- 

er learning and shows accuracies tested on the target test dataset 

chieved with classifiers trained on the target training dataset. For 

he class imbalance problem, in which classes are selected as ma- 

ority classes, is an important factor in determining the perfor- 

ance of the neural network, and the deviation of result accura- 

ies is large. Thus, accuracies under the class imbalanced condition 

how the mean and standard deviation. 

The proposed method is compared with previous fine-tuning 

ethods. 

• Fine-tuning: Traditional transfer learning method by fixing 

weights before the last convolution block and fine-tuning the 

rest of them. 
• DELTA [20] : The feature map regularization with attention. We 

used the publicly available source code and parameter settings 

at https://github.com/lixingjian/DELTA . 
• DIFA+cMWGAN: The adversarial feature augmentation method 

based on [22] . We modified the structures of GAN with cMW- 

GAN [21] . 

For a fair comparison with the other methods, we conducted 

xperiments on the same neural network architecture for classifi- 

ation, such as LeNet5, VGGNet-16, and ResNet-50. Table 2 shows 

he results of the proposed DFG method compared to the fine- 

uning, DELTA, and DIFA+cMWGAN methods. The results are the 

op-1 classification accuracies. The results in Table 2 show that 

ur method based on DFG leads to accuracies higher than other 

ethods for three different classifiers and six different benchmark 

atasets. 

.3. Qualitative results and ablation study 

Although the proposed DFG method shows higher accuracy 

han the other methods, we would like to better understand the 

enefits brought by DFG and visualize how closely the proposed 

FG generated the distribution of features resembled that of the 
6 
riginal in two-dimensional spaces. We apply PCA [54] and t-SNE 

55] analyses of real and generated features. Fig. 2 shows compar- 

sons between the real and generated features. Different colors in- 

icate different classes in the left part, and two different colors 

ndicate real and generated features in the right part. From a qual- 

tative point of view, real and generated features are distributed 

imilarly, and the inter-class structure is preserved. 

Additionally, we analyzed the activation maps from the pro- 

osed DFG method using class activation maps [56] . From Figs. 3 

nd 4 , we observe that the regions of the target object have higher 

ctivation than that of the original classifier and fine-tuning. Com- 

ared with the activation maps from the DELTA, the proposed 

ethod improved the concentration and activation degrees. 

We carried out an ablation study to demonstrate the effective- 

ess of the proposed DFG method. In the proposed DFG method, 

he feature extractor represents a first convolution layer or block 

n a neural network classifier, and the feature classifier represents 

he rest of the convolution layers and fully connected layers after 

he feature extractor. The feature generator generates the same di- 

ension of the output of the feature extractor. We evaluated the 

roposed network structure with variants of the feature extractor 

n the neural network classifier. Table 3 shows the comparisons on 

altech-256 dataset between the proposed structure with the first 

lock in ResNet-50 and its three variants. We observe that the pro- 

osed structure outperforms other variants. By extracting and gen- 

rating the features at the first block, the feature classifier can be 

rained deeply with the real and generated features and the fea- 

ure generator can represent diverse features since the dimension 

f the feature map is large. 

Moreover, we perform experiments to better understand how 

he filter weight changes during the training procedure. We inves- 

igate the sensitivity of the proposed loss function with respect to 

he parameters such as ρ value in (7) and a threshold value δ. 

ig. 5 presents the distribution of the weights of two representa- 

ive filters in the case of the SVHN dataset for two different hy- 

erparameters: ρ = 0 and 0.75. The first row in Fig. 5 represents 

https://github.com/lixingjian/DELTA
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Fig. 2. t-SNE visualization of feature distribution on (a) SVHN and (b) STL. In the left part, different colors indicate different classes. In the right part, red and cyan dots 

indicate real and generated features, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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he distribution of the weights of two representative filters with 

= 0 . 75 , and the second row represents the distribution of the 

eights of the same filters with ρ = 0 . The red straight line is 

he line of equality for all filters. For instance, if a weight value is 

laced above the line of equality, it means that the importance of 

he filter for the class is higher than the average of all filters. The 

ase with ρ = 0 involves the training of the feature generator with 

he weights of the filters by updating from the feature extractor 

rained on the target dataset, and the case with ρ = 0 . 75 involves

he training of the feature generator with the weights of the filters 

y two feature extractors: one is trained on the source dataset and 

he other is trained on the target dataset in the training procedure. 

e observed a significant difference between the two distributions 

f the weights. The distribution of the weights of the filters with 

= 0 converges to the equality baseline, whereas the distribution 

f the weights of the filters with ρ = 0 . 75 maintains the character- 

stics of the weight for each class label. Our hypothesis of a possi- 

le cause of the difference is that the feature extractor trained on 

he target dataset tends to be trained to activate all filters and be 

verfitted to the target dataset. The feature extractor trained on the 

ource dataset inactivates several convolution filters, and a small 

umber of filters are activated. The average accuracy with ρ = 0 . 75 

s 80.81% and that with ρ = 0 is 79.98%. The weights of the filters 

ith ρ = 0 . 75 , using the weight values from the feature extractor 

rained on the source dataset, prevent overfitting and help to gen- 

rate discriminative features for each class label. 

We have conducted experiments with hyperparameter ρ vary- 

ng from 0 to 1.0 on the SVHN dataset using DFG. Fig. 6 shows the
7 
ffect of hyperparameter ρ on the classification accuracy. In this 

ase, DFG with hyperparameter ρ = 0 . 75 outperformed that with 

ther hyperparameters including the cases that the weights of the 

lters by the feature extractor only trained on the source or the 

arget dataset. The test accuracy varies smoothly according to hy- 

erparameter ρ , and combination of the two different weights of 

 filter yields a better accuracy. 

Additionally, we have conducted experiments with the thresh- 

ld parameter δ varying from 0 to 1.5 on the SVHN dataset using 

FG. δ = 0 means that the threshold is not applied to the weight 

alues and δ = 1 . 0 means the threshold value is set to the aver-

ge value of all filters for each class. Fig. 7 shows the classification 

ccuracy by changing the threshold parameter δ from 0 to 1.5. It 

hows that DFG with the threshold δ = 0 . 95 provided that with 

ther threshold values. 

To measure the efficiency of the proposed model, the training 

ime on Caltech-256 dataset is computed. Generally, the runtime 

f the deep learning model is more important than the training 

ime, but the runtimes of the proposed method and other meth- 

ds are the same because all the methods used the same classifi- 

ation model ResNet-50 for Caltech-256 dataset. Table 4 shows the 

raining time comparison results, and the corresponding parame- 

er amounts and memory. The proposed method took much more 

ime than other methods because the parameter amount and GPU 

emory of the proposed method are larger than those of other 

ethods. However, the test accuracy of the proposed DFG method 

rovided higher than that of DELTA and DIFA+cMWGAN methods. 
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Fig. 3. Effect of the discriminative feature generation method on the Caltech-256 dataset: (a) original, (b) fine-tuning, (c) DELTA, and (d) DFG. 

Table 4 

Comparison of training time and parameter amount of the network structures. 

Method Parameter amount GPU training memory (MB) Training time (sec) Accuracy (%) 

DELTA 25,557,032 8,187 22,478 85.33 ± 0.15 

DIFA 

+ cMWGAN 

38,764,866 7,709 45,232 82.23 ± 0.32 

Ours(DFG) 73,590,722 11,597 62,473 87.09 ± 0.20 

8 
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Fig. 4. Effect of the discriminative feature generation method on the Food-101 dataset: (a) original, (b) fine-tuning, (c) DELTA, and (d) DFG. 

9 
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Fig. 5. Distribution of the weights of two representative filters for the SVHN dataset. The red straight line is a baseline that indicates the equality of all filters. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Classification accuracy on SVHN using DFG by changing hyperparameter ρ . 

Fig. 7. Classification accuracy on SVHN using DFG by changing hyperparameter δ. 
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. Conclusions 

In this paper, we proposed a novel DFG method using atten- 

ion maps in the feature space for enhancement in classification 
10 
nder data-imbalanced conditions and small-sampled dataset. The 

tructure of the feature extractor and feature classifier network 

f the independent network was employed in the proposed GAN 

tructure. To generate discriminative features, we adopted super- 

ised attention mechanisms for each class label and applied the 

echanisms to the feature generator network for the filter weights 

nd feature activation. The experimental results showed that the 

roposed DFG method improved the accuracy of the classification 

odels of LeNet-5, VGG-16, and ResNet-50 by 4.24%, 5.52%, 14.73%, 

3.95%, 42.99%, and 45.83% on six different benchmark datasets, 

espectively. Comparing to the transfer learning method, DELTA, 

nd the other adversarial feature augmentation methods, the pro- 

osed DFG method provided the largest improvement in classifi- 

ation performance. Furthermore, we visualized the distribution of 

enerated features by applying PCA and t-SNE and analyzed the 

ctivation maps from the proposed method using class activation 

aps. The qualitative results showed that the features generated 

y the proposed method are distributed similarly to the real fea- 

ures and the proposed method improved the concentration and 

ctivation degrees in the class activation maps. 

In the future, we will extend the proposed method to real- 

orld problems where the data imbalance is serious such as doc- 

ment image analysis [17] , prognostics and health management 

12,14] , and chemical property prediction [57] . Also, we will con- 

emplate further accuracy improvement in the feature generation 

ethod. Although the proposed method improved the performance 

f the classification under the class-imbalanced conditions, we be- 

ieve there is room for improvement as a gap still exists between 

ur method and the balanced condition. 
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Table A3 

Architecture of feature extractor and feature classifier based on VGGNet-16 

used for STL-10 and CINIC-10 datasets. 

Network Layers Act. Func. Dimension 

Feature 

Extractor 

Input Image - 32 × 32 × 3 

2 ×Conv 3 × 3 ReLU 32 × 32 × 64 

Max Pooling 2 × 2, st = 2 - 16 × 16 × 64 

Feature 

Classifier 

Input Feature - 16 × 16 × 64 

2 ×Conv 3 × 3 ReLU 16 × 16 ×128 

Max Pooling 2 × 2, st = 2 - 8 × 8 × 128 

3 ×Conv 3 × 3 ReLU 8 ×8 × 256 

Max Pooling 2 × 2, st = 2 - 4 × 4 × 256 

3 ×Conv 3 × 3 ReLU 4 × 4 × 512 

Max Pooling 2 × 2, st = 2 - 2 × 2 × 512 

3 ×Conv 3 × 3 ReLU 2 × 2 × 512 

Max Pooling 2 × 2, st = 2 - 1 × 1 × 512 

Adaptive Avg Pooling - 7 × 7 × 512 

Fully Connected ReLU 4096 

Fully Connected ReLU 512 

Fully Connected - 10 

SoftMax - 10 

Table A4 

Architecture of the generator and the discriminator for VGGNet-16 classifier 

on STL-10 and CINIC-10 datasets. 

Network Layers Act. func. Dimension 

Feature 

generator 

Input - 110 

FC - 4 × 4 × 128 

BatchNorm - 4 × 4 × 128 

DeConv 4 × 4, st = 2 lReLU 8 × 8 × 128 

BatchNorm - 8 × 8 × 128 

DeConv 4 × 4, st = 2 lReLU 16 × 16 × 128 

BatchNorm - 16 × 16 × 128 

DeConv 4 × 4, st = 1 lReLU 17 × 17 × 64 

BatchNorm - 17 × 17 × 64 

DeConv 4 × 4, st = 1 Tanh 16 × 16 × 64 

BatchNorm - 16 × 16 × 64 

Feature Input - 16 × 16 × 64 
eclaration of Competing Interest 

None. 
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ppendix A. Network Architectures and Implementation 

etails 

We implemented the proposed DFG method with LeNet-5 [47] , 

GGNet-16 [48] , and ResNet-50 [49] as the feature extractor and 

eature classifier. We divided the original architecture of the clas- 

ifiers into the feature extractor and feature classifier. The archi- 

ecture of the feature extractor and feature classifier is presented 

n Tables A .5 , A .7 , and A .9 . The output dimensions of the feature

xtractor and the feature generator should be the same. The archi- 

ecture of our feature discriminator and feature generator closely 

ollow the DCGAN architecture model [53] , which is an extended 

odel of the GAN that uses 3–4 transpose convolution layers in 

he generator and three convolution layers in the feature discrim- 

nator. The architecture of the generator and the discriminator for 

eNet-5, VGGNet-16, and ResNet-50 are shown in Tables A .6, A .8 , 

.10 , respectively. 

We used extended MNIST digits (EMNIST) [50] , CIFAR-10 [51] , 

nd ImageNet [52] as the source domain for LeNet-5, VGG-16, 

nd ResNet-50, respectively. For transfer learning, we followed the 

ame procedure as in [20] because of the close relationship be- 

ween the behavior regularization in this study and that one. Af- 

er adopting the pre-trained weight only for ResNet-50 and before 

ne-tuning the network with the target dataset, we replaced the 

ast layer of the base network with random initialization in a suit 
Table A1 

Architecture of feature extractor and feature classifier based on 

LeNet-5 used for SVHN and fashion-MNIST datasets. 

Network Layers Act. Func. Dimension 

Feature 

Extractor 

Input Image - 32 × 32 × 1 

Conv 5 × 5 ReLU 28 × 28 × 6 

Max Pooling 2 × 2 - 14 × 14 × 6 

Feature 

Classifier 

Input Feature - 14 × 14 × 6 

Conv 5 × 5 ReLU 10 × 10 × 16 

Max Pooling 2 × 2 - 5 × 5 × 16 

Fully Connected ReLU 120 

Fully Connected ReLU 84 

Fully Connected - 10 

SoftMax - 10 

Table A2 

Architecture of the generator and the discriminator for LeNet-5 classifier 

on SVHN and fashion-MNIST datasets. 

Network Layers Act. func. Dimension 

Feature 

generator 

Input - 110 

FC - 4 × 4 × 128 

BatchNorm - 4 × 4 × 128 

DeConv 3 × 3, st = 2 lReLU 9 × 9 × 48 

BatchNorm - 9 × 9 × 48 

DeConv 3 × 3, st = 1 lReLU 11 × 11 × 12 

BatchNorm - 11 × 11 × 12 

DeConv 4 × 4, st = 1 Tanh 14 × 14 × 6 

BatchNorm - 14 × 14 × 6 

Feature 

discriminator 

Input - 14 × 14 × 6 

Conv 5 × 5, st = 2 lReLU 7 × 7 × 32 

Conv 5 × 5, st = 2 lReLU 4 × 4 × 64 

Conv 5 × 5, st = 2 lReLU 2 × 2 × 128 

FC - 512 

discriminator Conv 5 × 5, st = 2 lReLU 8 × 8 × 32 

Conv 5 × 5, st = 2 lReLU 4 × 4 × 64 

Conv 5 × 5, st = 2 lReLU 2 × 2 × 128 

FC - 512 

Table A5 

Architecture of feature extractor and feature classifier based on ResNet-50 

used for Caltech-256 and Food-101 datasets. 

Network Layers Act. Func. Dimension 

Feature 

Extractor 

Input Image - 224 × 224 × 3 

Conv 7 × 7 st = 2 ReLU 112 × 112 × 64 

BatchNorm - 112 × 112 × 64 

Max Pooling 3 × 3, st = 2 - 56 × 56 × 64 

Residual Block #1 ReLU 56 × 56 × 256 

Feature 

Classifier 

Input Feature - 56 × 56 × 256 

Residual Block #2 ReLU 28 × 28 × 512 

Residual Block #3 ReLU 14 × 14 × 1024 

Residual Block #4 ReLU 7 × 7 × 2048 

Adaptive Avg Pooling - 1 × 1 × 2048 

Fully Connected - No.Class 

SoftMax - No.Class 
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11 
or the target dataset because the number of classes in the source 

ataset, ImageNet, is different from those in the target datasets, 

altech-256 [45] and Food-101 [46] . 

LeNet-5: LeNet-5 model was used for SVHN [41] and Fashion- 

NIST (F-MNIST) [42] . To remove the image dimension differ- 

nce, SVHN images were converted to grayscale and F-MNIST im- 

ges were resized to 32 × 32 with zero-padding. The input im- 

ges were normalized to zero-mean and the pixel values to range 

 −1 , 1] . We did not use any data augmentation method for pre-

rocessing. The weights of the feature extractor and feature clas- 

ifier were pre-trained using EMNIST. The weights of the feature 
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Table A6 

Architecture of the generator and the discriminator for ResNet-50 classifier on 

Caltech-256 and Food-101 datasets. 

Network Layers Act. func. Dimension 

Feature 

generator 

Input - 4900 + No.Class 

FC - 4 × 4 × 512 

BatchNorm - 4 × 4 × 512 

DeConv 4 × 4, st = 2 lReLU 8 × 8 × 512 

BatchNorm - 8 × 8 × 512 

DeConv 4 × 4, st = 2 lReLU 16 × 16 × 256 

BatchNorm - 16 × 16 × 256 

DeConv 2 × 2, st = 2 lReLU 30 × 30 × 256 

BatchNorm - 30 × 30 × 256 

DeConv 2 × 2, st = 2 Tanh 56 × 56 × 256 

BatchNorm - 56 × 56 × 256 

Feature 

discriminator 

Input - 56 × 56 × 256 

Conv 5 × 5, st = 2 lReLU 28 × 28 × 32 

Conv 5 × 5, st = 2 lReLU 14 × 14 × 64 

Conv 5 × 5, st = 2 lReLU 7 × 7 × 128 

FC - 6272 

FC - 512 
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enerator and feature discriminator were initialized using a Xavier 

rocedure, and the biases were set to zero [58] . We used a batch

ize of 64 and the Adam optimizer for all networks with param- 

ters β1 = 0 . 5 and β2 = 0 . 9 [59] . The learning rates of the fea-

ure extractor, feature classifier, feature generator, and feature dis- 

riminator for SVHN were 2 . 0 × 10 −5 , 2 . 0 × 10 −5 , 2 . 0 × 10 −4 , and

 . 0 × 10 −4 , respectively ( ηE , ηC , ηG , and ηD in Algorithm 1 .). The

earning rates for F-MNIST were ηE = ηC = 1 . 0 × 10 −5 and ηG = 

D = 1 . 0 × 10 −4 . The training steps were 20,0 0 0 iterations. The pa-

ameters in Algorithm 1 were set to n C1 = 2 , n C2 = 10 , n W 

= 50 0 0 ,

= 0 . 75 , δ = 0 . 95 , and α = β = γ = 0 . 333 . 

VGGNet-16: VGGNet-16 model was used for STL-10 [43] and 

INIC-10 [44] . CIFAR-10 (similar class labels to STL-10 and CINIC- 

0) was used for pre-training as the source domain. We down- 

caled the 96 × 96 image dimension of STL-10 to match the 32 

32 dimension of CIFAR-10 and CINIC-10. The input images were 

ormalized to zero-mean and the pixel values to range [ −1 , 1] . We

pplied data augmentation operations of random horizontal flip 

nd random crop with 4-pixels padding. The weights of the fea- 

ure extractor and feature classifier were pre-trained with CIFAR- 

0. The weights of the feature generator and the feature discrim- 

nator were initialized using a He procedure, and the biases were 

et to zero [60] . We used a batch size of 64 and the Adam op-

imizer for all networks with parameters β1 = 0 . 5 and β2 = 0 . 9 .

he learning rates for STL-10 were set to ηE = ηC = 5 . 0 × 10 −5 and

G = ηD = 1 . 0 × 10 −4 . The learning rates for CINIC-10 were set to

E = ηC = 2 . 0 × 10 −5 and ηG = ηD = 1 . 0 × 10 −4 . The training steps

or STL-10 and CINIC-10 were 20,0 0 0 and 40,0 0 0 iterations, respec-

ively. The parameters in Algorithm 1 were set to n C1 = 2 , n C2 = 10 ,

 W 

= 50 0 0 , ρ = 0 . 75 , δ = 0 . 95 , and α = β = γ = 0 . 333 . 

ResNet-50: ResNet-50 model was used for Caltech-256 [45] and 

ood-101 [46] . ImageNet was used as the source domain for pre- 

raining. We replaced the last fully connected layer of ResNet-50 

ecause of the different number of classes in ImageNet, Caltech- 

56, and Food-101 (10 0 0, 257, and 101, respectively). For ResNet- 

0, the input images were normalized to zero-mean and the pixel 

alues to range [ −1 , 1] and resized to 256 × 256. We applied the

ata augmentation operation of the random crop to 224 × 224 

nd random horizontal flip. For the Caltech-256 dataset, we sam- 

led 60 training samples and 20 testing samples for each cate- 

ory, according to [20,37] . The weights of the feature extractor 

nd the feature classifier were initialized by the model pre-trained 

n ImageNet, provided by Torchvision [61] , and the feature gen- 

rator and the feature discriminator were initialized using a He 

nitialization, and the biases were set to zero. We used a batch 
12 
ize of 64 and the Adam optimizer with parameters β1 = 0 . 5 and

2 = 0 . 9 for the feature generator and the feature discriminator, 

nd stochastic gradient descent with a momentum of 0.9 for opti- 

izing the feature extractor and the feature classifier. The learning 

ate for the feature generator and the feature discriminator was 

et to ηG = ηD = 1 . 0 × 10 −4 , and the learning rate for the feature

xtractor and feature classifier started with 0.01 and was divided 

y 10 after 20,0 0 0 iterations. The training steps were completed at 

0,0 0 0 iterations. The parameters in Algorithm 1 were set to n C1 =
 , n C2 = 5 , n W 

= 20 0 0 , ρ = 0 . 75 , δ = 0 . 95 , and α = β = γ = 0 . 333 . 

Additionally, we used the following publicly available source 

ode to implement our benchmarks. 

DELTA [20] : https://github.com/lixingjian/DELTA 

DIFA + cMWGAN [21,22] : 

https://github.com/ricvolpi/adversarial-feature-augmentation
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